LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **PHYSICS**

THIRD SEMESTER - NOVEMBER 2023

UPH 3502 – MATHEMATICAL PHYSICS - II

Date: 04-11-2023 Dept. No. Time: 09:00 AM - 12:00 NOON

	SECTION A - K1 (CO1)								
	Answer ALL the Questions (10 x 1 = 10)								
1.	Define the following								
a)	Order of an equation								
b)	Heat equation								
c)	Fourier transform								
d)	Interpolation								
e)	Euler's method								
2.	Fill in the blanks								
a)	The equation of motion of a vibrating string is								
b)	Laplace equation is								
c)	The Fourier transform of the function $e^{- x }$ is								
d)	The relation between the shifting operator E and the forward difference operator Δ is								
e)	The formula for Trapezoidal rule is								
	SECTION A - K2 (CO1)								
	Answer ALL the Questions(10 x 1 = 10)								
3.	True or False								
a)	Fourier series cannot be used to find the solution of wave equation.								
b)	In the heat flow equation, the quantity h is called Planck's constant.								
c)	The Fourier transform of $\frac{df}{dt} = i\omega FT(f(t))$.								
d)	The value of $E^2 f(x)$ with interval h is $f(x)$								
e)	Using the general quadrature formula, one can obtain the Simpson's rule.								
4.	Match the following								
a)	Wave equation - Trapezoidal rule								
b)	$\nabla^2 \emptyset = 0$ - Linearity Property								
c)	Fourier Transform - Laplace equation								
d)	Curve fitting - Vibrating string								
e)	Numerical Integration - Method of least squares								
SECTION B - K3 (CO2)									
Ans	wer any TWO of the following $(2 \times 10 = 20)$								
5.	Solve $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0$ by the method of separation of variables.								
6.	Solve the heat equation by Fourier series.								
7.	State and prove convolution theorem								

Max. : 100 Marks

8.	8. Solve the system of equations by Gauss Elimination method.										
	x + 2y + z = 3										
	2x + 3y + 3z = 10										
	3x - y + 2z = 13										
SECTION C – K4 (CO3)											
Ans	Answer any TWO of the following $(2 \times 10 = 20)$										
9.	Use Newton Raphson method to evaluate the function $f(x) = x^3 - 2x - 5$										
10.	The ends A and B of a rod of length 20 cm are at temperatures 30° C and 80° C respectively until										
	steady state prevails. The temperatures at the ends are changed to 40° C and 60° C respectively.										
	Find the temperature distribution in the rod at time t.										
11.	Find the Fourier sine and cosine transform of sin ax.										
12.	Formulate the one dimensional wave equation of a vibrating string.										
SECTION D – K5 (CO4)											
Answer any ONE of the following (1 x 20 = 20)											
13.	13. Obtain D'Alembert's solution to the wave equation for the vibrating string and give its										
1.4	physical interpretati	on			2						
14.	a. Find the Fourier t	ransform of t	he function	$f(x) = Ne^{x}$	$-\alpha x^2$ where]	N and α are					
	b Find the Fourier	rKS). Sine and cosir	e transform	of the functi	on $f(r) = r$	$r^2 \cdot 0 < \mathbf{v} < r$	1 (10 marks)				
	0. Find the Fourier sine and cosine transform of the function I (x) = x^2 ; 0 < x < 4. (10 marks) SECTION F K6 (CO5)										
Ans	wer any ONE of the	following	52011011	2 110 (00	,		$(1 \times 20 = 20)$				
15.	Using the following	data. find v a	at x = 1946 at	nd x = 1976			(1 4 20 20)				
10.		, <i>aata</i> , iiia y t	19 10 u	iu ii 1970	•						
	X	1941	1951	1961	1971	1981	1991				
	v	20	24	29	36	46	51				
	5					-					
16.	Evaluate $\int_{-1}^{1} e^x dx$	by using (i) T	rapezoidal r	ule (ii) Simp	oson's 1/3 rul	e. Also verif	the result by				
	actual integration.	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1				5				
			X7 X7 X7 X7	X X X X X X X							
			aaaa	aaaaaaa							