LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - PHYSICS
 THIRD SEMESTER - NOVEMBER 2023
 UPH 3502 - MATHEMATICAL PHYSICS - II

Date: 04-11-2023
Time: 09:00 AM - 12:00 NOON
Max. : 100 Marks

SECTION A - K1 (CO1)

Answer ALL the Questions

(10 x $1=10$)

1. Define the following
a) Order of an equation
b) Heat equation
c) Fourier transform
d) Interpolation
e) Euler's method
2. Fill in the blanks
a) The equation of motion of a vibrating string is
b) Laplace equation is
c) The Fourier transform of the function $e^{-|x|}$ is
d) The relation between the shifting operator E and the forward difference operator Δ is
e) The formula for Trapezoidal rule is

SECTION A - K2 (CO1)

Answer ALL the Questions

3. True or False
a) Fourier series cannot be used to find the solution of wave equation.
b) In the heat flow equation, the quantity h is called Planck's constant.
c) The Fourier transform of $\frac{d f}{d t}=i \omega \operatorname{FT}(f(t))$.
d) The value of $E^{2} f(x)$ with interval h is $\mathrm{f}(\mathrm{x})$
e) Using the general quadrature formula, one can obtain the Simpson's rule.
4. Match the following
a) Wave equation - Trapezoidal rule
b) $\nabla^{2} \emptyset=0 \quad$ Linearity Property
c) Fourier Transform - Laplace equation
d) Curve fitting $\quad-\quad$ Vibrating string
e) Numerical Integration - Method of least squares

> SECTION B - K3 (CO2)

Answer any TWO of the following

5. \quad Solve $\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0$ by the method of separation of variables.
6. Solve the heat equation by Fourier series.
7. State and prove convolution theorem

\&\&\&\&\&\&\&\&\&\&
